AGI 领域的融资竞赛已在水下开启。
账上资金体量,很大程度上影响这些 AGI 领域初创公司的生死存亡。
市场上剩余资金体量,很大程度上影响其他 AGI 领域初创公司可能获得的融资机会。
因此,在这个时间点上,我们与多家不同资金体量、不同成立时间、不同类型、不同风格的投资机构进行了访谈,他们的投资策略,某种程度上代表了当前市场上 AGI 乐观派投资人的普遍看法,或者有可能影响到更多可能进入 AGI 投资资金的看法。
我们与我们这次的访谈对象也希望用这样的形式,帮助 AGI 领域的创业者,还原不同资金规模体量的投资机构是如何思考 AGI 相关投资的。
我们采访了以下投资机构,可以结合要点进行针对性阅读。
01. 周志峰 启明创投 合伙人
02. 朱天宇 蓝驰创投 管理合伙人
03. 王啸 九合创投 创始人
04. 张津剑 绿洲资本 创始合伙人
05. 温永腾 BV百度风投 执行董事
06. 白则人 线性资本 投资副总裁
07. 杨孟彤 Atom Capital 创始合伙人
Founders Summary
在做了十几家机构的访谈后(部分交流及访谈未获得授权无法公开),我们认为:
1.高 Token 消耗的应用场景是明星创业团队的机会,低 Token 消耗的应用场景适合普通创业者突围。
普通背景的创业者,在高 Token 消耗的应用场景创业,会让很多投资人打退堂鼓。
高 Token 消耗的应用场景,其价值显而易见,是「共识赛道」,是属于「明星创业团队」的机会,也大概率是是模型公司会切入的方向,他们的资金杠杆率远高于行业均值。
模型与应用双螺旋增长,高 Token 消耗的场景,既需要团队有模型层的能力,又需要团队有足够的资金支撑。普通创业者往往难以在这两方面给到投资人信心。
反而是在低 Token 消耗的场景中,快速解决具象问题,获得经验,赢得新的筹码,更有可能获得投资人的初始支持。这样的场景,往往不在明星创业团队的潜在杀伤区,拼的是创业者对技术应用的理解、对场景的敏感度、对人性的洞察。
2. 「AI-Native」的团队是融资的必要条件。
无论创业者背景如何,「AI-Native」团队已成为融资的必要条件。如果无法利用 AI 提升团队效率,就难以证明自己对 AGI 有深刻理解,自然也就难以赢得投资者的青睐。
AGI 时代,诸多任务将被 AI 取代,人在公司运营中的作用很可能也会发生变化,创业公司的形态会向更小规模、更敏捷、更低成本演变。
当下,拥抱 AI 的相关初创公司以惊人的速度在市场中崭露头角。如,Pika 做到 50 万用户、5500 万美元融资、2 亿美元估值时,只有 4 个正式同事,只用了 6 个月。Carrd 做到 260 万用户时,团队不超过 3 个人。
这些小团队的成功并非偶然,他们凭借着对 AGI 的敏锐洞察和独特理解,借助 AI 的力量实现了快速 PMF、高速 ARR 增长,从而获得了公司持续运营、扩张的新融资。
这也将成为投资机构未来的共性要求,不断提高对创业公司人效的评价标准。OpenAI CEO Sam Altman 认为,AI 时代会创造出一种全新的创业公司,一个人的独角兽公司,则是一种极致人效、资金效率的要求。
对于年轻的应用开发者来说,在 AI 应用中积累足够的经验,完成「1 万小时积累」,体现对 AI-Native 应用及 AI-Native 社会的理解,是证明自己的有效途径之一。
3. 持续的融资能力是投资机构考核创业者的隐形标准。
首先,不同于移动互联网时代在一个清晰的赛道上比拼团队执行效率,今天 AGI 领域(特别是应用领域),创业团队的「生命力」成为了重要的投资决策要素。
这个要素可以由两个角度的能力构成,首先是「创始人的持续融资能力」是当前 AGI 相关赛道创始人最重要的能力之一,也是投资机构考察创业者的重要「隐性」标准之一。这是由于 AGI 领域早期技术迭代迅速,没有人能一上来就「大力出奇迹」的豪赌,而是需要足够的灵活性才能进行探索和试错。
所以如果创业者不是「明星创业者」,那么第二个角度则是能否迅速形成一定程度的商业正循环,以较低融资额获得留在牌桌上的「看牌」的能力,这些产品实践足够多、代价足够小的团队特质,也是投资机构会考量的因素,因为这是他们认为创业者能否有足够的「试错机会」、是否愿意下注的前提。
4. 警惕市场上的「两轮退」策略。
大部分上一代 AI 公司的投资人并未获得回报,仅在早期投入到诸如安防、自动驾驶等赛道才获得了回报,这让部分投资人对新一代的 AI 创业公司仍存有疑虑。因此当前市场上也出现了诸多「两轮退」的投资策略(这样的投资策略并未被我们吸纳到本文的访谈里),以保证基金利益最大化,创业者在融资过程中往往很难洞悉这样的投资策略。
AGI 领域还处于萌芽状态,这可能是一场至少为期数年的创业之旅。「两轮」后,创业者往往面临更激烈的市场竞争,这样的「退出策略」无疑会加大创业者的后续融资难度。即使面临融资压力,寻找到有包容度的资金,快速试错、迭代,才能确保公司在稳健发展的道路上不断前行。
01启明创投 周志峰
启明创投已投 AGI 相关项目: 智谱AI、优必选、无问芯穹、衔远科技、阶跃星辰、生数科技、自由量级、云知声、梅卡曼德、银河通用、无限光年等
启明创投已募管理资产总额:95 亿美元
核心观点:
1. 模型层的高技术密集型创业团队会产生显著的虹吸效应。
2. 绝大多数致力于开发大模型的公司最终将演变为模型应用一体化企业。
3. 生成式AI产业的发展正从超级模型向超级应用转型。
Q1:2023 年有哪些预判被证实或者证伪了?
周志峰:第一,我们把 AI 生态分成了基础架构层、模型层和应用层,去年投资布局的重点是模型层和基础架构层的企业,这个投资策略被证明是正确的。
其次,我们在 AI 上继续遵循我们一贯的科技投资方法论,我们觉得是正确的。科技浪潮的发展,会有技术奇点和市场引爆点,技术落地会有几个阶段。我们认为生成式人工智能还处于早期阶段,目前主要由技术创新驱动,尚未进入到产品和商业模式的创新阶段。
第三,2023 年初我们预判,模型层的高技术密集型创业团队会产生显著的虹吸效应。越是 AI 大咖创业,越是专注于前沿模型开发的公司,其「吸金」能力就越强。最后基本上也得到了证实,中国至少有 80% 甚至更多的资金、资源都投向了少数几家大模型开发公司。
第四,我们当时认为可能会有三类创业者出现:第一类是 AI 界顶级大咖;第二类是产业界老兵,如腾讯、字节跳动、快手等科技大厂背景的领军者;第三类则是像 PC 时代的比尔·盖茨、史蒂夫·乔布斯、互联网时代的马克·扎克伯格那样的年轻创业者,他们对新技术有深刻的洞察和极大的热爱。这个观点也经过了一定的验证。
此外,后来的事实也证明了当年我们比较犹豫的一些方向。我们曾经考虑过布局一些利用第三方大语言模型的应用产品,尤其当时美国企业 Jasper.ai 非常火爆。我们对这类项目的壁垒和可持续增长性有一定的担忧,但仍然认为中国应该会出现很多应用层公司。中国的生成式 AI 应用公司 2023 年在中国的成功度远远低于美国的应用公司,也在资本市场上没有达到美国的投资热度。去年美国市场上融资额超过 5000 万美元的应用公司有二十家以上。我们去年看了大量的应用层的公司,国内大约有 300 多家,并追踪了国外差不多 1000 多家公司,但最终出手的并不多。
Q2:启明创投在 AI 赛道会有什么特色的投资逻辑?
周志峰:启明创投应该是国内投资大模型公司数量最多的机构之一。这和市场上很多机构的投资策略不同,我们相信这个类别中可以涌现出多家成功的公司。
我们的底层逻辑是,绝大多数致力于开发大模型的公司最终将演变为模型应用一体化企业。在每一轮技术革新中,应用层往往会捕获最大的市场价值。自研模型的公司未来不仅会在模型和算法上有所建树,还将根据自研模型和所掌握数据的特点,深入到特定的应用场景中,从而创造更大的商业价值。
现阶段,我们将模型层的公司分为三类。第一类是基础模型公司,它们类似于建造电厂,旨在让其他企业接入并使用其服务,代表公司如 OpenAI 和智谱 AI。第二类是开源模型运营平台,它们提供开源模型、模型优化和托管等服务,如 Hugging Face 和中国的阿里云魔搭社区。第三类,我们最初称之为垂类模型,但现在更适合称其为模型应用一体化公司,这些公司直接利用自研模型去开发自己的垂直行业类或特定功能类应用。
生成式 AI 技术还处于发展早期阶段,类似于互联网的早期,各家公司还需要自己参与构建一部分技术基础设施,或不断适应动态发展的底层技术。
短期内,我们认为自研模型的公司将展现出更大的竞争力。它们能够从训练数据、模型优化等多个维度进行差异化竞争。模型层的公司根据自己的技术特点,开发出不同的应用来凸显其自有模型的优势。举例来说,如果一家专注于娱乐领域的模型应用一体化公司,它们在预训练和对齐阶段都使用了大量的爱情小说和电影情节数据,那么其训练出来的模型在对话时具有更加丰富的情绪表达,就会与一些通用的基础模型形成鲜明对比。
另外,从资本体量和试错成本上来看,模型层的公司做应用也具有优势。在 2023 年,模型层的公司融资额是以数亿美元计算,而应用层的公司融资额在千万美元这个级别,这意味着模型层的公司去探索应用时可以负担足够的试错成本去迭代自己的应用产品。
市场上,一些人可能会看到 OpenAI 在全球范围内的领跑地位,从而对模型层的其他创业企业比较悲观。我们也观察到一个有趣的现象:一旦 OpenAI 探索出一个新的技术创新,其他公司往往能够以更低的成本复刻,并缩小与其的差距。我们目前的观察是,包括中国在内的全球第一梯队的近 20 家模型研发公司,成本上,正在以大约 1/5-1/10 的成本去实现 OpenAI 的目前一代先进模型的水平;速度上,追赶的周期越来越短。而在 2023 年上半年,大家普遍认为追赶者和 OpenAI 有 18 个月左右的差距。
在投资策略上,我们今年会更注重早期投资布局。
虽然启明创投管理的资金体量相对较大,但作为一家创投机构,一方面当前很多研发语言模型和多模态模型的企业即使是早期,估值也不便宜,后期就更难投资。另一方面,生成式 AI 公司需要走过 TMF(Technology Market Fit)、PMF(Product Market Fit)阶段,一般来说需要的周期是远长于消费品牌产品等其他领域的公司。一旦生成式 AI 企业完成了 TMF 和 PMF,过了拐点,其上升趋势的斜率则更为陡峭,那时企业的价值会变得很高。
Q3:启明创投最近有什么对于 AI 的新思考?
周志峰:我们最近一直在思考,生成式 AI 产业的发展从超级模型向超级应用转型时,我们从投资角度应该如何应对。
因为我们投资了多家大模型团队,他们与产业链上下游的伙伴之间合作紧密,这些合作为我们揭示了潜在超级应用方向的信号。最近,一些历史上取得成功的创业者和科技大厂高管开始涌入这个领域,有些是选择直接创业,有些是选择加入创业公司,助力产品和应用的开发。
要实现从超级模型到超级应用的转变,我们需要思考三个关键问题:这一转变何时发生?以何种方式发生?以及由谁来驱动发生?
为了更深入地理解这种转变,我们研究了历史上几代科技大浪潮中涌现出的科技巨头的成长史,访谈了很多包括抖音早期团队在内的业界专家,试图找到一些底层规律性的东西。
这个问题是有一定时效性的,技术在不断变化,之前的判断可能在某个时间点后就不再成立了。在投资应用公司时,关键在于明确最我们要投什么样的技术能力、背景和策略的团队或企业。
短期内,我们看好自研模型去探索应用的公司,它们可以从数据、算法、系统、算力、模型优化等多个方面进行差异化竞争。
Q4:这一代大模型相关的 AI 创投浪潮与上一代会有什么区别?
周志峰:这一次是以预训练模型驱动的生成式 AI 为主,上一代主要是以感知为主的判别式 AI。
判别式 AI 的核心特点主要有两点:第一,它主要是进行视觉和语音的判断,而无法进行深层推理,它的应用场景较为有限,主要在人脸识别、物体识别、语音识别、基于视觉的智能驾驶等任务上取得了较大的发展。第二,上一代 AI 模型需要为特定任务定制,其泛化能力有限。
这也是为什么在过去 10 年中,人工智能企业在技术落地时会遇到较大挑战的原因,因为它们需要为不同场景组建不同的团队。例如,很多人认为酒店入住时的人脸识别系统与公共场所的基于人脸识别的智能安防系统的功能相似,然而,从模型构建、训练到部署,以及芯片和摄像头等配套硬件上,两者存在显著差异。